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Abstract. Experimental data suggest that in ionic solid solutions the bond-length mismatch is
partially accommodated by microscopic lattice distortions. In this paper we study the structural
properties of ionic alloys using a generalized Born–Mayer energy model accounting for the
possibility of atomic-scale relaxations. Cubic supercells are used to simulate the real random
alloys, providing statistical information about the atomic distribution and interatomic distances.
The good agreement with the available experimental data and with the results ofab initio
pseudopotential calculations performed for comparison for some selected systems indicate the
validity of the model here employed. We also discuss the applicability to ionic alloys of the
special quasi-random structuresoriginally proposed for semiconducting alloys.

1. Introduction

The extended x-ray absorption fine structure (EXAFS) technique has been successfully
applied to study the atomic-scale structure of many crystalline solid solutions, and in
particular of some ionic pseudobinary alloys A1−xBxC, both common anion (such as
K1−xRbxBr [1, 2], K1−xNaxCl, and K1−xNaxBr [3]) and common cation (RbBr1−x Ix [1],
RbBrxCl1−x [2, 4], and KCl1−xBrx [5]). The main results that appear from the analysis of
EXAFS data are the following: (i) the nearest-neighbour (NN) distances follow a bimodal
distribution with average values that, for a given concentration, are intermediate between
those of the corresponding pure compound and the linear interpolation between the two
values of the pure compounds (Vegard’s law) [6]; (ii) for each composition, the weighted
average of the two different average NN distances is close to the Vegard value, and hence to
that corresponding to the average lattice parameter of the alloy measured by x-ray; (iii) the
next-nearest-neighbour (NNN) distances follow a more complicated distribution with three
or four relevant peaks.

Much theoretical effort has been devoted in the past to interpreting the experimental data
concerning the average lattice parameter and the enthalpy of mixing [7] with simple theories
describing the alloy as a uniform average medium. Less effort conversely has been made
to study the internal lattice relaxations, which, according to the experimentally observed
different interatomic distances, should be present in the alloys. To our knowledge, the only
attempt in this direction was proposed by Maityet al [8], who described the variation of
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the NN distances with the composition in terms of few parameters derived from the pure
compounds. A simple cluster model considering the mixed crystal made up of domains
of pure compounds in contact with each other has been recently proposed to explain the
observed x-ray absorption near-edge structure spectra of K1−xNaxCl [9]. Other theoretical
models are available to explain the lattice relaxation around isolated impurities [10].

More recently, Frenkelet al [2] performed a molecular-dynamic simulation for two
selected alloys (namely, Rb0.76K0.24Br and RbBr0.62Cl0.38) described by a 103-atom cluster
with random occupation of the mixed sublattice, assuming harmonic potentials between NN
pairs, with force constants derived from the pure compounds and equilibrium bond lengths
taken equal to the average lengths of A–C and B–C bonds experimentally determined in
the alloy. After the simulation, the resulting average equilibrium NN distances are not
dissimilar from the input values used in the harmonic pair potential.

At variance with this approach, our aim is to implement a model which—making
use of bulk parameters only and not requiring further experimental inputs—is completely
transferable to alloys of any composition and which predicts NN bond lengths, average
lattice parameters, and heats of formation with a very limited computational effort. With
this aim a simple model accounting for atomic-scale relaxations was proposed a few years
ago by some of the present authors [11]. Periodically repeated supercells are used to describe
the alloys, whose energy is evaluated using a generalized Born–Mayer model, originally
formulated for pure compounds [12]. Application of the model to those alloys for which
experimental data were available gave promising results, despite the very small size of the
simulation supercell [11]. Here we better exploit the power of the model, applying it to
larger supercells of various shapes, sizes, and fillings in corresponding to a wide range of
alloy compositions. The use of larger supercells filled according to cubic symmetry (as
proposed in the original version of the model), randomly, or, even better, according to
the so-calledspecial quasi-random structures(SQSs) (proposed by Zungeret al [13] and
successfully applied mainly to study the electronic properties of covalent alloys) allows for
a satisfactory simulation of the real disordered systems and provides some statistics about
the distribution of the interatomic distances.

In the next section we present the generalized Born–Mayer model, and we describe
the supercells used. In section 3 we present the applications to K1−xRbxBr and show the
results obtained, comparing them with available experimental data. In the last section we
discuss the application of our model to other ionic alloys, we compare the results withab
initio pseudopotential calculations performed for some selected systems, and we draw our
conclusions.

2. The model

As already proposed in [11] we use a simple form of the Born–Mayer model [12] to calculate
the lattice energy, including three terms:

E = Ecoul. + Erep. + Epol.
= 1
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∑
i 6=j

ZiZje
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whereri , Zi , andαi are respectively the ionic position, charge, and polarizability of theith
ion, andrij = |ri−rj |. The first term is the Madelung sum of the electrostatic charge–charge
interactions between the ions; the second is the repulsive energy, including the short-range
repulsive interactions between NN pairs only; the last term is the polarization energy, given
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by the sum of the interactions of the ionic dipoleαiE(ri; {rj ;Zj }) at the pointri , induced
by the electric field due to lattice distortions, with the electric field itself, and which is
therefore a function of the inverse fourth power of the interatomic distance. Because of
symmetry the electric field vanishes at the ideal ionic positions in the total absence of lattice
distortions; therefore the termEpol. is zero in pure compounds. We neglect distant-neighbour
interactions, three-body terms, and Van der Waals and higher-order multipole electrostatic
interactions.

The infinite system is described using periodically repeated supercells. It is useful
to express the ionic positions{ri} in terms of the ideal undistorted positions based on
the average lattice parametera and of the displacements{δri} from such positions. The
equilibrium configuration of the distorted alloy is obtained by minimizing the total energy
E with respect to the parametersa and {δri}. An efficient minimization procedure has
been followed taking into account that (i) the energy is very sensitive to small changes
in the average lattice parametera, and less sensitive to the ionic displacements and,
(ii) in the equilibrium configuration the sublattice containing the common ions shows larger
relaxations—since the NN ions are different—than the other sublattice.

We simulate the infinite alloy using periodically repeated simple cubic, face-centred
cubic, or body-centred cubic supercells (which we indicate with SC, FCC, and BCC
respectively), having therefore the cubic symmetry which characterizes the Bravais lattice
of the constituent pure compounds. The supercells are filled with the different anions and
cations according to (i) cubic symmetry or (ii) a random distribution.

Figure 1. NN distances in K1−xRbxBr alloy, calculated using a 54-atom FCC cell with cubic
symmetric filling (panel (a)) and a 16-atom FCC cell with random filling (panel (b)). Circles and
squares refer tod[Rb–Br] andd[K–Br] respectively; the results averaged over all the different
configurations allowed in the supercell for a given composition are shown by open symbols, their
spreading (if present) is indicated by the error bars, and the results for the SQS configuration
are represented by solid symbols. Solid lines indicate the experimental data [2], and the dashed
line shows the NN distance obtained from the alloy average lattice parameter, which follows
the Vegard law.

Following the first scheme, the ions are grouped into shells of symmetry-equivalent
positions, each one filled by one kind of ion. The cubic symmetric filling prevents random
lattice distortions: the allowed displacements are radial relaxations of the shells, so that the
equilibrium geometry is fully described by the alloy average lattice parametera and by few
independent distortion parameters (one for each shell which can relax). In the preliminary
work reported in [11], only the minimum cell of this kind allowing for internal distortions
was considered. It is a FCC cell with 16 atoms describing the alloy with composition
x = 1/8 or 7/8: it corresponds only to one possible configuration (i.e. distribution of
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ionic types) and it is characterized by one independent distortion parameter. We are
going to consider here larger supercells, allowing for different compositions and, for each
composition, for different configurations which can be inequivalent for the filling pattern
and, consequently, total energies and structural equilibrium geometries.

In the case of random filling, for a given composition the number of different possible
configurations and of independent distortion parameters is higher than in the case of
symmetric filling (even the 16-atom FCC supercell allows for several compositions and
inequivalent configurations), and increases tremendously with the size of the supercell. The
computational cost of sampling all the different configurations can be drastically reduced
by considering only some highly representative configurations, i.e. SQS configurations,
proposed by Zungeret al [13] and successfully applied to the electronic properties of
covalent alloys. We address the reader to the original papers for details, and we only
summarize here the basic concepts necessary to understand our application. The SQS’s
configurations are those particular configurations which have the highest statistical weight
and whose energy better approximates that of the completely random alloy. In general (for
a given cell and composition) only one SQS configuration exists, but in some particular
cases there are several inequivalent SQS configurations with the same energy.

3. Applications to K1−xRbxBr

In this section we discuss in some detail the application of the model to the K1−xRbxBr alloy.
We set the repulsive potential parametersB andρ in order to reproduce the experimental
NN interatomic distances in the pure compounds: 3.298 and 3.427Å in KBr and RbBr
respectively [5], corresponding to a lattice mismatch of about 4%. A significant test
concerning our energy model is the study of extreme dilutions, i.e. of the limiting cases
x → 0 andx → 1. With this aim, we have considered supercells with only one substitutional
impurity, i.e. x = 2/N or the complementary casex = 1− 2/N , whereN is the number
of atoms for the supercell. These particular fillings have the same cubic symmetry of the
supercell. We found that a 128-atom FCC cell is large enough to simulate the isolated
impurity limit, with x = 1/64 (or the complementary casex = 63/64): among the shells
of ions surrounding the substitutional impurity, in fact, the first shell shows significant
distortions, whereas the second and the third ones are already only slightly distorted.
The radial relaxation|δr| of the first shell is about 0.06̊A away from the impurity for
x → 0 and conversely towards the impurity forx → 1; the relaxation of the second
and third shells is one order of magnitude smaller, and that of the others even less. The
average lattice parameter is very close to the Vegard prediction and to the experimental
data. The calculated NN distances between the substitutional ion and the common one are
slightly different with respect to the experimental values, and in both cases between the
corresponding Vegard value and the experimental one: we obtaind[Rb–Br]= 3.362 Å for
x → 0, andd[K–Br] = 3.363 Å for x → 1, whereas the corresponding experimental data
are 3.368 and 3.362̊A respectively (figure 1(a)). The agreement between our predictions and
the experimental data for the isolated impurity limit is good enough to make us confident
about the validity and the applicability of the model to intermediate compositions. In what
follows, we present and compare the results obtained using different supercells with the two
different filling criteria illustrated above.

Among the symmetric-filled supercells, we focus mainly on a 54-atom FCC cell,
allowing for several compositions and configurations (we address the reader to [11] for
the 16-atom FCC supercell). In figure 1(a) we show the variation of the NN distances in
the alloy, obtained using this cell. For each composition we show the results obtained
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for d[K–Br] (open squares) andd[Rb–Br] (open circles), averaged over the different
configurations allowed, equally weighted, and—for each configuration—over the various
distances present in the supercell. The error bars indicate the spreading of the average NN
distances over the different configurations eventually allowed. The alloy average lattice
parameter is always close to the Vegard value and it is not reported in the figure.

We have also considered for comparison a 64-atom SC cell. The results obtained are
similar to those obtained with the 54-atom FCC cell. Remarkably, the 64-atom SC cell
with symmetric filling can be used to describe several configurations for the compositions
x = 1/8 andx = 7/8, previously studied [11] in only one configuration with the small 16-
atom FCC cell. We found that the NN distances averaged over all the configurations allowed
in the 64-atom SC cell are worse than the values obtained with the single configuration of
the small 16-atom FCC cell: this is because the average for the 64-atom SC cell includes
also unrelaxed configurations, where the internal distortions are symmetry forbidden.

This example points out that the results obtained with the cubic-symmetric filling must
be evaluated globally over the entire range of compositions studied and supercells used;
in fact a given supercell can be more suitable to describe some compositions rather than
others, and can give misleading results for those specific compositions that admit many
configurations with symmetry-forbidden internal distortions. We can however conclude that
globally the use of larger supercells better simulates the random system allowing in general
for many relaxed configurations and many independent distortion parameters. In summary,
comparing the results obtained with the symmetrically filled cells with the experimental
data, we observe that the agreement is satisfactory for compositionsx close to 0, 0.5, and
1, but at variance with other intermediate compositions.

In order to investigate whether the discrepancy with the experimental data is mainly
due to the particular filling criterion, or if it is an intrinsic limit of the energy model, we
consider the case of random filling. In this case even a small supercell allows for many
compositions. For instance the 16-atom FCC cell can describe the alloy withx = n/8, where
n = 1, 2, . . . ,7. In figure 1(b) we show the results for the NN distances, using the same
symbols as panel (a). Also in this case, for each composition the average lattice parameter
is close to the Vegard value and it is not reported in the figure. In both panels (a) and (b)
we also show the NN distances obtained from the SQS configurations (solid symbols; in
panel (a) we do not report all those possible with the 54-atom cell, but only those for some
selected compositions). One can see that in general the NN distances obtained with the
SQS configuration are close to the results averaged over the different configurations with
random filling, as assessed in [13].

We find it instructive at this point to discuss in some detail the results obtained for
compositionsx ≈ 0.5, for which the comparison between the symmetric and random filling
criteria could be quite meaningful; for the extreme concentrations, conversely, we expect that
randomly and symmetrically filled cells give many identical configurations, and therefore
no very different results. In figure 2 we report the results obtained from (a1) the average
of the symmetric filling configurations for a 54-atom FCC cell (x ≈ 0.52), (a2) the SQS
configuration for the same cell and composition, (b1) the average of the random filling
configurations for a 16-atom FCC cell (x = 0.5), and (b2) the SQS configuration for the
same cell and composition. Whereas the average values (solid lines) of thed[Rb–Br] and
d[K–Br] NN distances in the different cases are quite similar, non-negligible differences
occur in their statistical distributions. The distributions ofd[Rb–Br] and d[K–Br] are
rather broadened (the maximum broadening occurring in the case (a1), i.e. for the cubic
symmetrically filled supercell) and partially overlapping. They cover a range including
both the corresponding bulk value (long-dashed line) and the unrelaxed NN distance as
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deduced from the average lattice parameter of the alloy (dotted line); the average value of
the distribution is intermediate between these values.

Figure 2. NN distance distribution in K1−xRbxBr alloy for x ≈ 0.5. Panel (a1) refers to
the 54-atom FCC cell with symmetric filling andx ≈ 0.52, whereas panel (b1) refers to the
16-atom FCC cell with random filling andx = 0.5; panels (a2) and (b2) show the results for
the SQS configurations for the same cells and compositions as the corresponding upper panels.
In the upper panels the distributions are obtained by averaging over the different configurations
allowed. The vertical solid lines represent the average NN distances; the long-dashed lines
indicate the NN distances in the corresponding pure compound, and the dotted lines indicate the
unrelaxed NN distance deduced from the alloy average lattice parameter. The distributions are
normalized to one.

To briefly quantify the variation of the NN distances as a function of the alloy
composition it is useful to introduce the ratio

η(x) = d[Rb–Br](x)− d[K–Br](x)

d[Rb–Br](1)− d[K–Br](0)
(2)

whered[Rb–Br](1) andd[K–Br](0) are the bulk values. Sinced[Rb–Br](x) andd[K–Br](x)
have a similar linear behaviour,η is almost constant withx and can be extracted with a
fit over the entire range of composition. The valueη = 0 would indicate that the lattice is
undistorted and that the NN distances have the common value predicted by the Vegard law,
whereasη = 1 would describe the case in which the NN distances conserve their own bulk
values. We find from the experimental dataηexp. = 0.53, a value which is typical for the
ionic compounds, whereas in the covalent alloysη is closer to 1 [15]. From the different
sets of calculated NN distances, we obtainη = 0.27 when estimated from the results of the
54-atom FCC cell with symmetric filling, 0.47 from the SQS configurations of the same
cell, and 0.43 from the results of the 16-atom FCC cell with random filling, as well as
from the SQS configurations of the same cell. We are confident that the agreement with
the experimental data could be improved with a limited computational effort using SQS
configurations in larger supercells.

We conclude the analysis of our results looking at the cation–cation and anion–anion
NNN distances and related distributions. We focus on the SQS configuration forx ≈ 0.52 in
the 54-atom FCC cell. The distributions of the four different kinds of NNN distance, namely
K–K, Rb–Rb, K–Rb, and Br–Br, are shown in figure 3. The Br–Br NNN distances have a
quite broadened distribution, although peaked around the unrelaxed distance deduced from
the average alloy lattice parameter; a similar broadening is present also for the distances
between higher-order neighbours. Conversely, all the cation–cation distance distributions
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are rather sharp. These results are in agreement with the trends extracted from the EXAFS
data, and can be easily understood considering that the common ion (i.e., Br in this case)
sublattice shows the most relevant distortions.

Figure 3. NNN distance distributions in the random K1−xRbxBr (x ≈ 0.52) alloy simulated
with the SQS configuration in a 54-atom FCC cell. The results are presented for all the different
pairs of NNNs, i.e. for K–K, Rb–Rb, K–Rb, and Br–Br from the uppermost to the lowest panels.
The solid line is the average of the distribution, and the dashed line indicates the value deduced
from the alloy average lattice parameter. The distributions are normalized to one.

4. Other ionic alloys and conclusions

We apply our model also to RbBr1−x Ix and KCl1−xBrx alloys, for which EXAFS data are
reported in detail in [1] and [5]. For K1−xNaxCl and K1−xNaxBr not many details are
given in the related reference [3]. The trends obtained from the calculated NN and NNN
distances are similar to those previously discussed for K1−xRbxBr, but the agreement with
the experimental data is worse. In fact, we find a disagreement even for the impurity limits.
For RbBr1−x Ix we obtaind[Rb–I] = 3.541 Å for x → 0, andd[Rb–Br] = 3.532 Å for
x → 1, whereas the experimental data are 3.591 and 3.518Å respectively. For the other
alloy, KCl1−xBrx , we obtaind[K–Br] = 3.177 Å when x → 0 (3.195Å experimentally)
andd[K–Cl] = 3.172 Å when x → 1 (no experimental data are available). For this alloy
discrepancies between our predictions and the experimental data also exist for intermediate
compositions.

In order to understand whether those discrepancies are due to the simplicity of the energy
model used, we performedab initio pseudopotential [16] calculations for the RbBr1−x Ix
alloy at some selected compositions in small supercells. At variance with our simple
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model, such calculations take properly into account the electronic charge distribution, and
therefore include corrections both to the Madelung electrostatic energy (which accounts
for pointlike charge–charge interactions only) and to the short-range repulsive energy; also
NNN interactions are included, whereas Van der Waals interactions are not. For a given
supercell, composition, and configuration, the results obtained from the model and from the
ab initio calculations are not significantly different, supporting therefore the validity of the
energy model used, despite its simplicity.

However, we have also considered the possibility of refining the model including NNN
repulsion [17] and Van der Waals [18] and three-body [19] interactions. We studied the effect
of each term separately, considering the SQS configuration in the 16-atom FCC cell. We
found that the addition of these terms as well as small changes in the parameters involved in
the model (i.e. ionic polarizability [20] and repulsive parameters) do not affect significantly
the final results, and in particular do not improve the agreement with the experimental data.
We point out that not only is the polarization term very important, as already observed in
[11], but it is really the only term relevant to our purposes. We think that a possible source
of discrepancy between our results and the experimental data in some systems can be the
temperature at which the data are detected. In [21] a large variation ofη is reported for the
AgBrxCl1−x ionic alloys: η changes from≈0.55 to≈0.87 when the temperature increases
from 77 to 295 K, thus indicating that low-temperature conditions, as in the case of our
model, are characterized by small values ofη. Unfortunately, no experimental data on the
temperature dependence ofη for the systems that we have investigated here are available
to support this idea.
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